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Abstract
Background Late-life depression (LLD) poses a significant health risk among the elderly, with widowhood as a 
prominent contributing factor. However, the mechanisms that render some widowed individuals susceptible to 
depression while others remain resilient remain poorly understood.

Methods In this five-year longitudinal study, we followed 203 cognitively healthy, widowed elderly individuals (mean 
age: 65.2 years, 100 women). The median follow-up time was 4.8 years. Brain structural networks were constructed via 
diffusion tensor imaging and analyzed using graph theory metrics. Logistic regression and Cox proportional hazards 
models were employed to assess the predictive role of structural network attributes in depression onset. Moderation 
models further examined the influence of psychosocial factors on depression risk.

Results During our follow-up, 22 participants developed LLD (mean age: 65.6 years, 12 women). Altered brain 
structural network properties, alongside key psychosocial factors, were observed in those at risk of developing 
depression prior to symptom emergence. Logistic and Cox regression models revealed that decreased rich-club 
connections, reduced nodal efficiency in the left hippocampus (HIP.L), and lower network modularity significantly 
predicted depression onset. Additionally, these network alterations correlated with greater depression severity at 
follow-up. Moderation analyses indicated that weekly exercise frequency and time spent with children notably 
mitigated the effects of network disruptions on depression severity.

Conclusions Among cognitively healthy widowed elders, diminished rich-club connections, modularity, and HIP.L 
nodal efficiency are strong predictors of future depression risk. Furthermore, low physical activity and limited family 
interaction may amplify susceptibility within this high-risk group, suggesting that targeted early interventions could 
reduce depression risk in this vulnerable population.
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Introduction
Late-life depression (LLD) is a significant mental health 
issue affecting a substantial portion of the elderly popu-
lation, with serious implications for overall well-being, 
cognitive function, and physical health [1, 2]. Character-
ized by its onset in individuals aged 60 and above, LLD 
not only diminishes quality of life but also increases risks 
of comorbidities and mortality [3–5]. Among the vari-
ous factors contributing to depression in older adults, 
widowhood is one of the most influential, often trigger-
ing feelings of loss, loneliness, and social isolation [6–9]. 
Despite this well-established link between widowhood 
and depression, a crucial question remains unanswered: 
why do some elderly individuals develop depression after 
the loss of a spouse, while others remain resilient?

The brain functions as a complex network of inter-
connected regions, facilitating various cognitive and 
emotional processes [10]. Recent advancements in neu-
roimaging techniques have enabled researchers to inves-
tigate the concept of brain networks, elucidating how 
structural connectivity influences mental health out-
comes [11]. Abnormalities within these networks, par-
ticularly in terms of reduced rich-club connections and 
altered modularity, have been implicated in the patho-
physiology of depression [12]. Such alterations may 
impair the efficiency of information processing across 
brain regions, potentially leading to the manifestation of 
depressive symptoms [13]. A deeper understanding of 
the relationship between structural network changes and 
depression can yield valuable insights into the underlying 
mechanisms contributing to LLD.

Beyond structural changes, psychosocial factors sig-
nificantly influence depression risk in the elderly [14]. 
Factors like social isolation, life stressors, and emotional 
regulation difficulties are key contributors to LLD [15]. 
Emerging evidence suggests that chronic psychosocial 
stress may induce neurobiological alterations, linking 
these stressors to structural brain changes that increase 
susceptibility to depression [16, 17]. This complex rela-
tionship underscores the importance of understanding 
how psychosocial stress interacts with neural structures 
to shape mental health outcomes in the elderly.

To address these gaps, we propose a five-year longitu-
dinal study involving 203 cognitively healthy, widowed 
elderly individuals. Using diffusion tensor imaging (DTI) 
and deterministic fiber tracking, we will construct indi-
vidual-level structural brain networks. Graph theory will 
quantify network property changes over time, enabling 
us to elucidate the interplay between early structural net-
work alterations and psychosocial influences. By integrat-
ing these perspectives, our study aims to identify early 
indicators of LLD and inform potential preventive strate-
gies for healthy aging populations.

Materials and methods
Demographics
A cohort of 250 cognitively healthy, widowed elderly 
individuals was prospectively enrolled in this study. 
Inclusion criteria were as follows: (1) widowed within 
the past year and aged over 60 years; (2) voluntary par-
ticipation with signed informed consent; (3) ability to 
comprehend and adhere to study protocols, no signifi-
cant hearing or language impairments, and capacity to 
complete all cognitive assessments, questionnaires, and 
imaging procedures; (4) absence of a depression diag-
nosis at baseline, as defined by DSM-IV criteria; (5) no 
history of major neurological conditions (e.g., epilepsy, 
stroke, or Parkinson’s disease); and (6) intact cognitive 
function at baseline, as indicated by a Montreal Cogni-
tive Assessment (MoCA) score ≥ 24. Participants were 
excluded if they: (1) had a prior psychiatric diagnosis 
(e.g., major depression, bipolar disorder, schizophre-
nia); (2) reported alcohol or substance abuse within six 
months before baseline; (3) suffered from severe physical 
illnesses that could impair daily functioning or participa-
tion in the study (e.g., uncontrolled cardiac or respiratory 
disease); (4) had contraindications to MRI scanning (e.g., 
metal implants, pacemakers, or severe claustrophobia); 
(5) experienced major head trauma, neurosurgery, or 
other medical events that might affect brain structure 
within six months before baseline; or (6) had a family his-
tory of depression or had encountered significant stress-
ful life events (SLEs) in the preceding six months, as both 
genetic and environmental factors are major contributors 
to depression [18–20].

During the five-year follow-up, 21 participants were 
lost to follow-up, 8 withdrew from the study (including 
5 who died in accidents), and 18 were excluded due to 
significant SLEs, such as the loss of another close family 
member or friend. None of the participants in our cohort 
became romantically involved over the five-year study 
period. Ultimately, the analysis included 203 participants, 
of whom 22 developed depression.

Study methods
At baseline, participants underwent MRI scanning and 
were monitored for up to five years, with depression 
onset as the primary outcome. Mental health assess-
ments, including evaluations for SLEs, were conducted 
biannually via home visits or telephone interviews. Each 
participant underwent evaluation by two experienced 
psychiatrists or clinical psychologists using standard-
ized protocols. Mental state and depression severity 
were assessed with the Structured Clinical Interview for 
DSM-IV (SCID) and the 24-item Hamilton Depression 
Rating Scale (HDRS) [21]. Cognitive function was mea-
sured using the MoCA [22], while the Holmes and Rahe 
Social Readjustment Rating Scale (SRRS) was used to 
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track recent SLEs [23]. Meanwhile, cardiovascular fac-
tors, weekly exercise frequency, and time spent with 
children, along with other demographic variables, were 
thoroughly assessed. Weekly exercise frequency was 
measured through self-reported questionnaires adminis-
tered during baseline and follow-up assessments. Partici-
pants were asked to report the number of days per week 
they engaged in physical activity lasting at least 30  min 
per session [24]. In our study, time spent with children 
specifically referred to interactions with biological or 
adopted children [25]. This variable was measured based 
on self-reported frequency and duration of in-person 
interactions per week, including activities such as shared 
meals, conversations, and participation in social or rec-
reational activities. Notably, virtual or phone interactions 
were not considered in this assessment.

MRI scanning
MRI data were acquired using a 3.0T Siemens scanner 
with an 8-channel phased-array head coil. T1-weighted 
and DTI sequences were collected. High-resolution 
3D echo-planar imaging was performed with the fol-
lowing parameters: repetition time (TR) = 14.0 ms, 
echo time (TE) = 4.92 ms, flip angle = 25°, field of 
view (FOV) = 240 × 240  mm², matrix = 256 × 256, 
axial slice thickness = 1  mm, and 176 slices. DTI data 
were obtained using a diffusion-weighted single-shot 
spin-echo sequence (TR = 20,500 ms, TE = 103 ms, 
FOV = 230 × 230  mm², matrix = 128 × 128, b-value = 0, 
1000  s/mm², 25 diffusion gradient directions, slice 

thickness = 1.2  mm, no inter-slice gap, total scan 
time = 20 min 12 s).

Brain structural network construction
Figure 1 illustrates the flowchart of structural network 
construction. Whole-brain structural networks were 
constructed based on DTI data. Preprocessing involved 
geometric distortion and head motion correction, 
noise reduction, and anisotropic diffusion correction 
[26]. Deterministic fiber tracking was then employed to 
reconstruct white matter tracts [27]. Brain regions were 
parcellated into 90 nodes using the Anatomical Auto-
matic Labeling (AAL) atlas, with edges representing the 
strength of white matter fiber connections between these 
regions, weighted by the number of fibers [28–30]. This 
yielded a 90 × 90 structural connectivity matrix for each 
participant. Network construction methods followed 
previously published protocols.

Structural network properties
The topological properties of brain structural networks 
reflect patterns of connectivity and information trans-
fer efficiency between brain regions (For a detailed 
description, see Supplementary Material 1). The rich-
club phenomenon describes highly interconnected hubs 
(rich-club nodes) that are more densely connected with 
each other than with other nodes, playing a central role 
in global network function [31]. Rich-club nodes were 
defined as those in the top 15% by degree (number of 
fiber connections), and connections were classified into 
rich-club (between rich-club regions), feeder (rich-club 

Fig. 1 Flowchart of structural network construction using diffusion MRI data. (A) Diffusion tensor imaging (DTI) data acquisition. (B) Reconstruction 
of white matter (WM) fiber tracts using deterministic tractography. (C) Whole-brain parcellation into 90 nodes according to the Anatomical Automatic 
Labeling (AAL) atlas. (D) Structural connectivity matrix construction by assigning reconstructed fibers to corresponding nodes. (E) Example of a structural 
network representation from a healthy subject. (F) Comprehensive analysis of the resulting structural network. Abbreviations: WM, white matter; FA, 
fractional anisotropy; AAL, Anatomical Automatic Labeling
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to peripheral regions), and local (between peripheral 
regions) types [27, 32]. Connection strength for each type 
was calculated as the sum of the edge weights for that 
connection type [33].

Modularity captures the network’s division into func-
tional modules with dense intra-module and sparse 
inter-module connections, potentially reflecting special-
ized processing [34, 35]. Small-world properties describe 
networks with high local clustering and short global path 
lengths, supporting efficient local and global processing 
[36, 37]. Global efficiency measures the network’s ability 
to transfer information via the shortest paths, reflect-
ing the brain’s functional efficiency [38]. The clustering 
coefficient measures the density of connections around a 
node, with high clustering supporting localized process-
ing [39]. Nodal efficiency reflects the centrality of indi-
vidual nodes within the network [40].

Statistical analysis
Statistical analyses were conducted using R 3.5.1 and 
SPSS 23.0. Normality and variance homogeneity were 
assessed using the Shapiro-Wilk and Levene’s tests, 
respectively. Group comparisons were performed using 
independent samples t-tests or Mann-Whitney U tests, 
depending on the distribution of the data (adjusted for 
demographic factors including age, gender, cardiovascu-
lar, and social factors). To account for multiple compari-
sons, false discovery rate (FDR) correction was applied to 
adjust for comparisons between multiple brain regions. 
Categorical variables were analyzed using chi-square 
tests. Logistic regression models were used to assess 
associations between clinical and demographic variables 
and depression onset. After controlling for confound-
ers, additional logistic regression models examined the 
relationship between structural network properties 
and depression onset. Receiver Operating Characteris-
tic (ROC) curve analysis was conducted to evaluate the 

predictive performance of the models. Participants were 
dichotomized into high- and low-risk groups based on 
median structural network metrics. A multivariate Cox 
regression model was employed to assess the relationship 
between network properties and depression risk. Corre-
lation analyses explored relationships between network 
properties and clinical features, adjusted for covariates. 
Multiple linear regression identified factors influencing 
HDRS scores, and moderation models tested the mod-
erating effects of lifestyle factors on the relationship 
between structural network properties and depression 
severity.

Results
Demographic characteristics
Table 1 summarizes the demographic and clinical charac-
teristics of all participants. A total of 203 healthy elderly 
widowed individuals (mean age: 65.2 years; 100 women, 
103 men) completed the follow-up. The median follow-
up time was 4.8 years, with a range of 0.5 to 5 years. By 
the study’s conclusion, 22 participants were diagnosed 
with late-life depression (LLD group), while the remain-
ing 181 did not develop depression (non-LLD group). 
The average time to depression onset in the LLD group 
was 3.1 years. At baseline, participants in the LLD group 
exhibited lower cognitive function compared to the non-
LLD group, although both groups remained within the 
normal range (t = 2.254, P = 0.025). The LLD group also 
reported significantly lower weekly exercise frequency 
(t = 2.306, P = 0.028), spent less time with their children 
(t = 2.523, P = 0.017), and had a higher prevalence of death 
of both parents (χ2 = 4.532, P = 0.033). No significant dif-
ferences were observed between the two groups in age, 
gender, education level, body mass index (BMI), or HDRS 
scores (P > 0.05).

Table 1 Demographics and clinical characteristics of the participants. Data are means (standard deviation) unless otherwise noted. All 
of the scores are Raw values. MoCA, Montreal cognitive assessment; BMI, body mass index; WEF, weekly exercise frequency; TSC, time 
spend with children; HDRS, Hamilton depression rating scale
Variables Non-LLD group (N = 181) LLD group (N = 22) χ2 t P
Age (years) 65.2 (3.0) 65.6 (3.5) - −0.604 0.547
Gender (W/M) 88/93 12/10 0.276 - 0.600
Education (years) 10.8 (3.2) 10.3 (3.1) - 0.744 0.458
MoCA scores 26.9 (2.0) 25.9 (1.9) 2.254 0.025
BMI 22.4 (2.6) 22.2 (3.0) - 0.373 0.710
WEF 2.5 (1.8) 1.7 (1.5) 2.306 0.028
TSC 9.6 (6.0) 7.0 (4.2) - 2.523 0.017
Hypertension (Y/N) 68/113 8/14 0.012 0.912
Diabetes (Y/N) 56/125 6/16 0.124 0.724
Smoking history (Y/N) 112/69 15/7 0.333 0.564
Death of both parents (N) 80 15 4.532 - 0.033
HDRS scores (baseline) 3.4 (2.3) 4.2 (2.5) - −1.567 0.119
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Differences in structural network properties
At baseline, both the LLD and non-LLD groups exhibited 
typical rich-club organization, with similar distributions 
of core brain regions. However, the LLD group showed 
a significantly lower proportion of rich-club connections 
compared to the non-LLD group (5.012% vs. 5.892%, 
P < 0.01, Supplementary Material 2). Further analysis 
revealed a marked reduction in the strength of rich-
club connections in the LLD group (t = 10.823, P < 0.001, 
Fig. 2A). Both groups demonstrated small-world network 
properties, yet global metrics indicated that brain modu-
larity (t = 11.754, P < 0.001, Fig. 2B) and clustering coeffi-
cient (t = 2.673, P = 0.008, Fig. 2C) were notably reduced 
in the LLD group. Local network analysis revealed sig-
nificant reductions in nodal efficiency within the left hip-
pocampus (HIP.L, t = 12.037, P < 0.001), left insula (INS.L, 
t = 2.463, P = 0.015), left precuneus (PCUN.L, t = 2.733, 
P = 0.007), and right amygdala (AMYG.R, t = 2.217, 
P = 0.028) in the LLD group (Fig. 2D). By the end of the 
follow-up, the LLD group exhibited further declines in 

rich-club connections, global efficiency, brain modular-
ity, HIP.L nodal efficiency, right Caudate nucleus (CAU.R) 
and INS.L nodal efficiency, while the non-LLD group 
remained stable with no significant changes (Supplemen-
tary Material 3).

Structural network properties and depression risk
Logistic regression analysis was conducted with 
depression onset as the dependent variable and base-
line clinical characteristics as independent variables 
(Table  2). The results indicated that weekly exercise 
frequency, time spent with children, and widowhood 
status at baseline were not significant predictors of 
depression onset (p > 0.05). However, after adjust-
ing for confounding factors, rich-club connections 
(OR = 0.982[95%CI:0.972–0.993], P < 0.001), brain modu-
larity (OR = 0.919[95%CI:0.862–0.980], P = 0.010), and 
HIP.L nodal efficiency (OR = 0.946[95%CI:0.915–0.979], 
P < 0.001) emerged as significant predictors of depression 
risk. Although the clustering coefficient demonstrated 

Fig. 2 Differences in structural network properties between the LLD and non-LLD groups. (A) Rich-club organization and connection properties in each 
group. Red nodes represent rich-club members identified across all subjects, with node size indicating nodal connection strength. Colors distinguish 
between rich-club, feeder, and local connections. Bar charts illustrate group differences in these three connection types. (B) Schematic of clustering coef-
ficient and group-wise differences in clustering coefficients. (C) Schematic of modularity and corresponding group differences. (D) Group differences in 
nodal efficiency across the structural network. Abbreviations: C, clustering coefficients; HIP.L, left hippocampus; INS.L, left insula; PCUN.L, left precuneus; 
AMYG.R, right amygdala. Statistical significance: *P < 0.05, **P < 0.01, ***P < 0.001
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some predictive value, its significance diminished after 
adjusting for weekly exercise frequency and death of both 
parents status (P > 0.05). ROC curve analysis indicated 
that rich-club connections, brain modularity, and HIP.L 
nodal efficiency had strong predictive power for depres-
sion onset, with area under the curve values of 0.822, 
0.804, and 0.840, respectively (Fig. 3B). A combined anal-
ysis of these factors yielded an even greater predictive 
effect (AUC = 0.924, P < 0.001, Fig. 3B).

A multivariate Cox regression model further vali-
dated the predictive role of rich-club connections, 
right hippocampal nodal efficiency, and brain modu-
larity for depression risk (Fig.  3A). Participants were 
stratified into two groups based on the median val-
ues of these indicators, and time-to-depression risk 
models were constructed over the 5-year follow-up 
period. Participants with lower rich-club connections 
(HR = 2.126[95%CI:1.279–3.534], P = 0.004), brain modu-
larity (HR = 2.692[95%CI:1.622–4.469], P < 0.001), and 
HIP.L nodal efficiency (HR = 2.055[95%CI:1.296–3.259], 
P = 0.002) were at higher risk of developing depression 
(Fig.  3C). Additionally, the death of both parents was 
identified as a contributing factor to increased depression 
risk (HR = 0.586[95%CI:0.370–0.929], P = 0.023; Fig. 3A).

Changes in structural network properties and clinical 
characteristics
Table 3 presents the correlation analysis between changes 
in structural network properties and clinical characteris-
tics. After adjusting for covariates, no significant correla-
tions were observed between baseline structural network 
indicators and baseline HDRS scores (P > 0.05). However, 
by the end of the follow-up, significant correlations were 

observed between baseline rich-club connections (β=-
0.471, P = 0.027), brain modularity (β=-0.524, P = 0.012), 
and HIP.L nodal efficiency (β=-0.481, P = 0.023) with 
depression severity in the LLD group, but not in the non-
LLD group (P > 0.05). Additionally, rich-club connec-
tions were significantly associated with cognitive scores 
in both the LLD (baseline: β = 0.590, P = 0.004; endpoint: 
β = 0.555, P = 0.007) and non-LLD groups (baseline: 
β = 0.466, P = 0.038; endpoint: β = 0.618, P = 0.003) at both 
baseline and endpoint.

Moderating effects of weekly exercise frequency and time 
spent with children
To explore potential moderators of the relationship 
between structural network properties and depres-
sion severity, we first identified predictors of HDRS 
scores. Multivariate linear regression analysis revealed 
that death of both parents (β=-0.450, P = 0.035), lower 
weekly exercise frequency (β=-0.516, P = 0.014), and 
shorter time spent with children (β=-0.478, P = 0.025) 
were associated with greater depression severity at onset 
(Supplementary Material 4). Further moderation analy-
sis showed that weekly exercise frequency significantly 
moderated the relationship between rich-club connec-

tions (β rich−club connections−weekly exercise frequency
= −0.271, P = 0.029;  

Fig.  4A) and brain modularity 
(βbrain modularity−weekly exercise frequency=-0.333, P = 0.011; 
Fig.  4B) with depression severity in man partici-
pants, suggesting that higher exercise frequency 
may attenuate the depressive effects associated 
with lower structural network properties. Addi-
tionally, time spent with children moderated the 

Table 2 Predicting the occurrence of depression. B, Beta statistic; SE, standard error; Wald, Wald statistic; exp, exponential; CI, 
confidence interval; BMI, body mass index; WEF, weekly exercise frequency; TSC, time spend with children; HDRS, Hamilton depression 
rating scale; HIP.L, left hippocampus; INS.L, left Insula; PCUN.L, left precuneus; AMYG.R, right amygdala; NE, nodal efficiency

B SE Wald P Exp (B) 95% CI
Age 0.291 0.131 3.266 0.071 1.338 1.035–1.729
Gender −0.070 0.132 0.285 0.594 0.932 0.720–1.207
Education −0.030 0.245 0.015 0.901 0.970 0.600−1.569
MoCA scores 0.055 0.289 0.036 0.849 1.056 0.600−1.862
BMI −0.168 0.232 0.524 0.469 0.846 0.536–1.332
WEF −0.183 0.375 0.237 0.626 0.833 0.399–1.737
TSC −0.191 0.177 1.173 0.279 0.826 0.584–1.169
Death of both parents 0.097 0.107 0.832 0.362 1.102 0.893–1.359
HDRS scores 0.288 0.299 0.924 0.337 1.333 0.742–2.397
Rich-club connections −0.018 0.005 12.866 < 0.001 0.982 0.972–0.993
Clustering coefficient 0.006 0.010 0.359 0.549 1.006 0.987–1.026
Modularity −0.084 0.033 6.657 0.010 0.919 0.862–0.980
HIP.L NE −0.055 0.017 10.447 0.001 0.946 0.915–0.979
INS.L NE −1.030 1.065 0.935 0.334 0.357 0.044–2.883
PCUN.L NE −0.159 0.084 3.567 0.059 0.853 0.724–1.005
AMYG.R NE −0.495 0.373 1.755 0.185 0.610 0.293–1.266
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Fig. 3 (See legend on next page.)
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relationship between rich-club connections and 
depression risk across all participants (woman: 
βrich−club connections−time spent with children=-0.325, P = 0.013; 
man: βrich−club connections−time spent with children=-0.326, 
P = 0.036; Fig.  4C and D), underscoring the protective 
role of familial interactions in depression prevention.

Discussion
This study presents a five-year longitudinal investiga-
tion into the relationship between brain structural net-
work properties and the future onset of LLD in a healthy 
elderly cohort. Our findings reveal that individuals who 
later developed depression had exhibited significant 
alterations in brain structural networks prior to symptom 
onset. Specifically, reductions in rich-club connections, 
brain modularity, and HIP.L nodal efficiency emerged 
as key predictors of future depression. Additionally, our 
moderation analyses indicated that weekly exercise fre-
quency and time spent with children significantly influ-
enced the relationship between these structural network 
changes and depression risk, underscoring the role of 
lifestyle factors in modulating depressive outcomes. 
These results offer novel insights into the early neural 
markers of LLD and suggest potential targets for preven-
tive interventions.

At baseline, reduced rich-club connections was signifi-
cantly associated with the future development of LLD, 
highlighting its potential as an early biomarker. Rich-club 
connections represent core brain regions that are highly 
interconnected, supporting efficient communication 
across the brain network [41, 42]. Previous studies have 
implicated diminished rich-club connections in various 
neuropsychiatric disorders, including depression [43], 
Alzheimer’s disease [44], and schizophrenia [45]. In the 
context of depression, reduced rich-club connections 
may signal impaired brain network efficiency, leading to 
cognitive dysfunction and emotional dysregulation [46, 
47]. Our findings extend prior research by demonstrating 
that reductions in rich-club connections can be detected 
prior to LLD onset, suggesting that it may not only reflect 
a phenotypic feature of depression but also serve as an 
early indicator of vulnerability to the disorder. Monitor-
ing changes in this network feature could facilitate early 
identification of individuals at elevated risk for LLD.

Furthermore, lower brain modularity and HIP.L nodal 
efficiency were predictive of future LLD. Brain modu-
larity reflects the extent to which brain regions are 

organized into specialized modules that coordinate effi-
ciently [48, 49]. Reduced modularity indicates a break-
down in this organization, potentially leading to deficits 
in cognitive and emotional processing [50]. Similarly, the 
HIP.L, critical for memory and emotional regulation, may 
lose its capacity to effectively process emotional stimuli 
when nodal efficiency is reduced, heightening the risk of 
depression [51–53]. These findings align with previous 
research and underscore the significance of these net-
work changes as early markers of depression risk [17, 54].

Our moderation analysis revealed that weekly exer-
cise frequency and time spent with children significantly 
moderated the impact of structural network changes on 
depression onset. Physical activity is well-established as 
a protective factor against depression, promoting neu-
roplasticity, enhancing cerebral blood flow, and improv-
ing the function of neural circuits involved in emotional 
regulation [55–57]. Our results suggest that exercise 
mitigates the negative impact of reduced rich-club con-
nections and brain modularity on depression risk. Addi-
tionally, time spent with children provided a protective 
effect, which may be linked to the emotional support and 
psychological benefits derived from family interactions 
[58, 59]. This is particularly relevant for widowed individ-
uals, for whom companionship from children may coun-
teract the heightened risk of depression.

Our results show that weekly exercise frequency sig-
nificantly moderated the relationship between rich-club 
connections, brain modularity, and depression severity in 
men, but not in women. This stronger effect in men may 
be due to several factors. Research suggests older men 
engage in more structured physical activity with greater 
neuroprotective effects, while women may participate in 
less intense activities [60]. Additionally, sex-specific dif-
ferences in brain plasticity and hormonal regulation (e.g., 
testosterone vs. estrogen) may make men more respon-
sive to exercise’s neuroprotective effects [61]. Lastly, cul-
tural differences in coping styles may explain why men 
use exercise more as a stress coping mechanism, while 
women may rely more on social support [62].

We acknowledge the connection between LLD and 
early signs of dementia [63]. Although our study focused 
on the neurobiological mechanisms of LLD, we included 
MoCA scores as a covariate to control for baseline cog-
nitive function, ensuring participants were cognitively 
healthy (MoCA ≥ 24) at enrollment. To explore cogni-
tive status and depression risk further, we conducted a 

(See figure on previous page.)
Fig. 3 Structural network properties and risk of depression onset. (A) Hazard ratios for variables associated with depression onset, displayed with 95% 
confidence intervals, based on Cox proportional hazards models. Significant predictors include death of both parents, rich-club connections, modular-
ity, and left hippocampal nodal efficiency (HIP.L NE). (B) Receiver operating characteristic (ROC) curves for the predictive accuracy of modularity, rich-
club connectivity, and HIP.L NE on depression onset, with AUC values provided for each predictor; the combined model exhibits the highest accuracy 
(AUC = 0.842). (C- E) Kaplan-Meier survival curves showing cumulative probability of depression-free survival over time, stratified by high and low values of 
(C) rich-club connections, (D) modularity, and (E) HIP.L NE. Patients with lower values in these metrics are at higher risk for depression onset, underscoring 
the prognostic value of structural network properties. Abbreviations: WEF, weekly exercise frequency; TSC, time spent with children; NE, nodal efficiency
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Table 3 Association of changes in structural network properties with clinical characteristics
Structural network properties HDRS

(baseline)
MoCA (baseline) HDRS (endpoint) MoCA (endpoint)

r P r P r P r P
Non-LLD group (N = 181)
Rich-club connections baseline −0.122 0.608 0.466 0.038 −0.429 0.059 −0.101 0.670

endpoint 0.057 0.810 −0.437 0.054 0.113 0.634 0.618 0.003
Clustering coefficient baseline −0.223 0.343 0.188 0.427 −0.288 0.217 0.048 0.839

endpoint −0.247 0.293 0.039 0.871 −0.084 0.726 0.375 0.103
Modularity baseline 0.245 0.299 0.125 0.600 −0.393 0.087 0.091 0.703

endpoint −0.384 0.095 0.062 0.796 0.091 0.702 0.268 0.254
HIP.L NE baseline −0.227 0.336 −0.266 0.257 −0.117 0.624 0.061 0.800

endpoint −0.070 0.769 0.232 0.326 −0.056 0.813 0.120 0.614
INS.L NE baseline −0.203 0.392 0.081 0.733 −0.293 0.210 0.019 0.937

endpoint −0.249 0.291 0.171 0.470 −0.029 0.902 0.423 0.063
PCUN.L NE baseline −0.0217 0.359 0.075 0.753 −0.311 0.182 −0.096 0.686

endpoint −0.009 0.970 −0.023 0.923 −0.328 0.158 −0.153 0.519
AMYG.R NE baseline −0.130 0.586 0.325 0.163 −0.025 0.916 0.024 0.919

endpoint −0.269 0.252 0.045 0.852 −0.294 0.209 0.266 0.057
LLD group (N = 22)
Rich-club connections baseline −0.037 0.869 0.590 0.004 −0.471 0.027 0.085 0.707

endpoint −0.201 0.371 0.253 0.255 −0.244 0.274 0.555 0.007
Clustering coefficient baseline −0.117 0.603 0.042 0.854 −0.089 0.694 0.084 0.712

endpoint 0.023 0.919 −0.009 0.967 0.144 0.523 0.278 0.211
Modularity baseline −0.084 0.711 0.057 0.800 −0.524 0.012 0.356 0.104

endpoint −0.212 0.344 0.311 0.159 −0.413 0.056 −0.066 0.771
HIP.L NE baseline −0.221 0.324 0.130 0.564 −0.481 0.023 −0.034 0.881

endpoint −0.261 0.240 0.020 0.928 −0.386 0.076 0.364 0.095
INS.L NE baseline −0.194 0.387 −0.026 0.910 −0.354 0.105 0.033 0.885

endpoint −0.129 0.568 0.221 0.322 −0.404 0.062 0.283 0.202
PCUN.L NE baseline 0.034 0.882 −0.009 0.967 −0.351 0.109 0.119 0.699

endpoint −0.254 0.255 0.227 0.311 0.089 0.692 0.403 0.063
AMYG.R NE baseline −0.046 0.887 0.009 0.968 −0.217 0.331 0.190 0.400

endpoint −0.156 0.489 0.200 0.381 −0.118 0.600 0.300 0.180

Fig. 4 Moderating effects of psychosocial factors on the relationship between structural network properties and depression severity. (A-D) Moderation 
analysis of the associations between structural network properties and HDRS scores, stratified by varying levels of moderator variables. Abbreviations: RC, 
rich-club connections; WEF, weekly exercise frequency; TSC, time spent with children; HDRS, Hamilton Depression Rating Scale
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sensitivity analysis stratified by MoCA scores. The results 
showed consistent associations between brain network 
alterations (e.g., reduced rich-club connections, HIP.L 
nodal efficiency) and depression onset across both high 
and low cognitive status groups, suggesting these changes 
are independent of baseline cognitive differences. Future 
studies with larger samples and longer follow-ups should 
explore longitudinal cognitive changes and their relation-
ship with depression.

The use of structural network analysis enabled us to 
detect early alterations in white matter connectivity, 
offering a more nuanced view of brain changes than tra-
ditional imaging techniques, which often capture only 
macroscopic anatomical differences [47, 64]. Structural 
network analysis reveals the efficiency and coordina-
tion of communication between brain regions, allowing 
for the identification of potential pathological changes 
before clinical symptoms manifest [65, 66]. Our longitu-
dinal design provided a unique opportunity to observe 
how changes in brain network properties over time pre-
dict depression risk, offering important insights for early 
intervention strategies. By focusing on a healthy elderly 
population, we were able to identify individuals at ele-
vated risk for depression, providing a foundation for 
personalized preventive approaches aimed at improving 
mental health outcomes in this vulnerable group.

While our study focused on the overall relation-
ship between structural brain network alterations, psy-
chosocial factors, and LLD risk, we acknowledge the 
importance of sex differences. Research suggests that 
neurobiological and psychosocial factors contribute to 
sex-specific depression susceptibility [67, 68]. Our mod-
eration analysis showed that weekly exercise frequency 
moderated the relationship between structural net-
work properties and depression severity in men but not 
women, highlighting potential sex differences. However, 
given our sample size (203 participants, 22 with LLD), 
full sex-stratified analyses would lack statistical power. 
Future studies with larger cohorts are needed to explore 
sex-specific brain network alterations and their role in 
LLD risk, which may inform personalized interventions.

Our study has several limitations. The relatively small 
sample size, particularly in the LLD group, limited our 
ability to explore sex differences and may affect the gen-
eralizability of our findings. Expanding the cohort in 
future research would strengthen the robustness of these 
results. Additionally, while we adjusted for a range of con-
founding factors, unmeasured variables such as socioeco-
nomic status and lifestyle habits may have influenced the 
observed relationships. Future research could also benefit 
from incorporating multimodal imaging techniques, such 
as functional connectivity and molecular imaging, to pro-
vide a more comprehensive understanding of the patho-
physiology of LLD.

In conclusion, our findings highlight the clinical and 
public health relevance of identifying structural brain 
network alterations as early biomarkers for LLD, enabling 
early detection and timely interventions. Incorporating 
regular physical activity and social connections into pre-
ventive mental health programs, especially for widowed 
elderly individuals, could reduce the burden of depres-
sion. Given the aging population and rising prevalence 
of LLD, integrating brain network screening and psy-
chosocial support into routine geriatric care, particularly 
in community-based healthcare settings, could improve 
mental health outcomes and quality of life for older 
adults at risk.

Supplementary Information
The online version contains supplementary material available at  h t t p s :   /  / d o  i .  o r  
g  /  1 0  . 1 1   8 6  / s 1 2  8 7 7 -  0 2 5 - 0  6 0 2 8 - y.

Supplementary Material 1

Acknowledgements
Not applicable.

Author contributions
Yang Li, Hu Xu, Xingbing Chen, and Hui Su made a substantial contribution 
to the concept and design, analysis and interpretation of data; Yang Li wrote 
the manuscript and provided figures; Xingbing Chen, and Hui Su revised 
the article critically with substantial modification; Jiale Wu, Yi Ding, Yunqian 
Zhu, and Yang Wang organized the study and supported the data analysis. 
All authors were involved in the theoretical discussion and performing of 
the experiments. All authors read and approved the final version of the 
manuscript.

Funding
The authors disclosed receipt of the following financial support for the 
research, authorship, and publication of this article: This work was supported 
by National Natural Science Foundation of China (81871343); Jiangsu 
Provincial Key Research and Development Program (BE2017698, BE2021693); 
Natural Science Foundation of Jiangsu Province (BK20181226, BK20171311); 
Key Projects of the Gaoyou Municipal Health Commission (GY20221201); Key 
Projects of the Yangzhou Municipal Health Commission (2023-1-03).

Data availability
The datasets used and analysed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
This study protocol was reviewed and approved by the Gaoyou People’s 
Hospital Ethics Committee (GYYY2018025) and conducted in accordance with 
the principles outlined in the Declaration of Helsinki. All participants were 
thoroughly informed about the study’s objectives and procedures, and written 
informed consent was obtained from each participant.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 19 November 2024 / Accepted: 7 May 2025

https://doi.org/10.1186/s12877-025-06028-y
https://doi.org/10.1186/s12877-025-06028-y


Page 11 of 12Li et al. BMC Geriatrics          (2025) 25:351 

References
1. Goke K, McClintock SM, Mah L, Rajji TK, Lee HH, Nestor SM, Downar J, Noda 

Y, Daskalakis ZJ, Mulsant BH, et al. Cognitive profiles in treatment-Resistant 
Late-Life depression and their impact on treatment outcomes. Biol Psychiatry 
Cogn Neurosci Neuroimaging. 2024;9(11):1199–210.

2. Liu W, Li H, Lin X, Li P, Zhu X, Su S, Shi J, Lu L, Deng J, Sun X. Blunted superior 
Temporal gyrus activity to negative emotional expression after mindfulness-
based cognitive therapy for late-life depression. Front Aging Neurosci. 
2022;14:1001447.

3. Farioli Vecchioli S, Sacchetti S, Nicolis di Robilant V, Cutuli D. The role of physi-
cal exercise and Omega-3 fatty acids in depressive illness in the elderly. Curr 
Neuropharmacol. 2018;16(3):308–26.

4. Szanto K, Galfalvy H, Vanyukov PM, Keilp JG, Dombrovski AY. Pathways to 
Late-Life suicidal behavior: cluster analysis and predictive validation of 
suicidal behavior in a sample of older adults with major depression. J Clin 
Psychiatry 2018; 79(2).

5. Zhong Y, Pham S, Porta G, Douaihy A, Marsland A, Brent D, Melhem NM. 
Increased burden of cardiovascular risk among youth suicide attempters. 
Psychol Med. 2022;52(10):1901–9.

6. Zhang AZ, Wang QC, Huang KM, Huang JG, Zhou CH, Sun FQ, Wang SW, Wu 
FT. Prevalence of depression and anxiety in patients with chronic digestive 
system diseases: A multicenter epidemiological study. World J Gastroenterol. 
2016;22(42):9437–44.

7. Xue S, Lu A, Chen W, Li J, Ke X, An Y. A latent profile analysis and network 
analysis of anxiety and depression symptoms in Chinese widowed elderly. J 
Affect Disord. 2024;366:172–80.

8. de Sousa ILM, Silveira R, Takito MY, Pereira AL, Lucianelli-Junior D, Carmona 
GS, Viegas A, Teixeira FB, Santos OS, Valentin FN. The impact of the social 
isolation in elderly Brazilian mental health (anxiety and depression) during 
the COVID-19 pandemic. Front Psychiatry. 2022;13:888234.

9. Li X, Ge T, Dong Q, Jiang Q. Social participation, psychological resilience 
and depression among widowed older adults in China. BMC Geriatr. 
2023;23(1):454.

10. Zhang X, Niu P, Su M, Zhou L, Huang Y, Chen J, Liu S. Topological differences 
of striato-thalamo-cortical circuit in functional brain network between 
premature ejaculation patients with and without depression. Brain Behav. 
2024;14(6):e3585.

11. Cross NE, Pomares FB, Nguyen A, Perrault AA, Jegou A, Uji M, Lee K, 
Razavipour F, Ali OBK, Aydin U, et al. An altered balance of integrated and 
segregated brain activity is a marker of cognitive deficits following sleep 
deprivation. PLoS Biol. 2021;19(11):e3001232.

12. Xu X, Tang R, Zhang L, Cao Z. Altered topology of the structural brain network 
in patients with Post-stroke depression. Front Neurosci. 2019;13:776.

13. Fang F, Godlewska B, Cho RY, Savitz SI, Selvaraj S, Zhang Y. Personalizing 
repetitive transcranial magnetic stimulation for precision depression treat-
ment based on functional brain network controllability and optimal control 
analysis. NeuroImage. 2022;260:119465.

14. Xing L, Guo Z, Long Z. Energy landscape analysis of brain network dynamics 
in Alzheimer’s disease. Front Aging Neurosci. 2024;16:1375091.

15. Liu X, Yang H, Becker B, Huang X, Luo C, Meng C, Biswal B. Disentangling 
age- and disease-related alterations in schizophrenia brain network using 
structural equation modeling: A graph theoretical study based on minimum 
spanning tree. Hum Brain Mapp. 2021;42(10):3023–41.

16. Mai N, Zhong X, Chen B, Peng Q, Wu Z, Zhang W, Ouyang C, Ning Y. Weight 
Rich-Club analysis in the white matter network of Late-Life depression with 
memory deficits. Front Aging Neurosci. 2017;9:279.

17. Peng D, Shi F, Shen T, Peng Z, Zhang C, Liu X, Qiu M, Liu J, Jiang K, Fang Y, et 
al. Altered brain network modules induce helplessness in major depressive 
disorder. J Affect Disord. 2014;168:21–9.

18. Li Y, Xie Y, Xu Y, Xian X, Wang R, Cai L, Li G, Li Y. Interleukin-6-white matter 
network differences explained the susceptibility to depression after stressful 
life events. J Affect Disord. 2022;305:122–32.

19. Ye J, Wen Y, Chu X, Li P, Cheng B, Cheng S, Liu L, Zhang L, Ma M, Qi X, et al. 
Association between herpes simplex virus 1 exposure and the risk of depres-
sion in UK biobank. Clin Transl Med. 2020;10(2):e108.

20. Zeng Y, Navarro P, Xia C, Amador C, Fernandez-Pujals AM, Thomson PA, 
Campbell A, Nagy R, Clarke TK, Hafferty JD, et al. Shared genetics and Couple-
Associated environment are major contributors to the risk of both clinical 
and Self-Declared depression. EBioMedicine. 2016;14:161–7.

21. Liu P, Li Q, Zhang A, Liu Z, Sun N, Yang C, Wang Y, Zhang K. Similar and 
different regional homogeneity changes between bipolar disorder and 

unipolar depression: A Resting-State fMRI study. Neuropsychiatr Dis Treat. 
2020;16:1087–93.

22. Fan SP, Chen YF, Li CH, Kuo YC, Lee NC, Chien YH, Hwu WL, Tseng TC, Su TH, 
Hsu CT, et al. Topographical metal burden correlates with brain atrophy and 
clinical severity in Wilson’s disease. NeuroImage. 2024;299:120829.

23. Ortega L, Montalvo I, Monseny R, Burjales-Marti MD, Martorell L, Sanchez-
Gistau V, Vilella E, Labad J. Perceived stress, social functioning and quality of 
life in first-episode psychosis: A 1-year follow-up study. Early Interv Psychiatry. 
2021;15(6):1542–50.

24. Wang X, Li W, Song F, Wang L, Fu Q, Cao S, Gan Y, Zhang W, Yue W, Yan F et 
al. Carotid atherosclerosis detected by ultrasonography: A National Cross-
Sectional study. J Am Heart Assoc 2018;7(8).

25. Kang HW, Park M, Wallace Hernandez JP. The impact of perceived social sup-
port, loneliness, and physical activity on quality of life in South Korean older 
adults. J Sport Health Sci. 2018;7(2):237–44.

26. Del Re EC, Bouix S, Fitzsimmons J, Blokland GAM, Mesholam-Gately R, 
Wojcik J, Kikinis Z, Kubicki M, Petryshen T, Pasternak O, et al. Diffusion 
abnormalities in the corpus callosum in first episode schizophrenia: associ-
ated with enlarged lateral ventricles and symptomatology. Psychiatry Res. 
2019;277:45–51.

27. Liu X, He C, Fan D, Zang F, Zhu Y, Zhang H, Zhang Z, Zhang H, Xie C. Altera-
tions of core structural network connectome associated with suicidal ide-
ation in major depressive disorder patients. Transl Psychiatry. 2021;11(1):243.

28. Ohashi K, Anderson CM, Bolger EA, Khan A, McGreenery CE, Teicher MH. 
Susceptibility or resilience to maltreatment can be explained by specific dif-
ferences in brain network architecture. Biol Psychiatry. 2019;85(8):690–702.

29. Joel D, Berman Z, Tavor I, Wexler N, Gaber O, Stein Y, Shefi N, Pool J, Urchs S, 
Margulies DS, et al. Sex beyond the genitalia: the human brain mosaic. Proc 
Natl Acad Sci U S A. 2015;112(50):15468–73.

30. Liu J, Ma S, Mu J, Chen T, Xu Q, Dun W, Tian J, Zhang M. Integration of white 
matter network is associated with interindividual differences in psychologi-
cally mediated placebo response in migraine patients. Hum Brain Mapp. 
2017;38(10):5250–9.

31. Mishra VR, Sreenivasan KR, Yang Z, Zhuang X, Cordes D, Mari Z, Litvan I, 
Fernandez HH, Eidelberg D, Ritter A, et al. Unique white matter structural 
connectivity in early-stage drug-naive Parkinson disease. Neurology. 
2020;94(8):e774–84.

32. Peng L, Feng J, Ma D, Xu X, Gao X. Rich-Club organization disturbances of 
the individual morphological network in subjective cognitive decline. Front 
Aging Neurosci. 2022;14:834145.

33. Tuladhar AM, Lawrence A, Norris DG, Barrick TR, Markus HS, de Leeuw FE. 
Disruption of rich club organisation in cerebral small vessel disease. Hum 
Brain Mapp. 2017;38(4):1751–66.

34. Fleischer V, Koirala N, Droby A, Gracien RM, Deichmann R, Ziemann U, Meuth 
SG, Muthuraman M, Zipp F, Groppa S. Longitudinal cortical network reorgani-
zation in early relapsing-remitting multiple sclerosis. Ther Adv Neurol Disord. 
2019;12:1756286419838673.

35. Li X, Li H, Jiang X, Li J, Cao L, Liu J, Xing H, Huang X, Gong Q. Characterizing 
multiscale modular structures in medication-free obsessive-compulsive 
disorder patients with no comorbidity. Hum Brain Mapp. 2022;43(7):2391–9.

36. Zhang T, Zhao Z, Zhang C, Zhang J, Jin Z, Li L. Classification of early and late 
mild cognitive impairment using functional brain network of Resting-State 
fMRI. Front Psychiatry. 2019;10:572.

37. Fang S, Wang Y, Jiang T. Epilepsy enhance global efficiency of Language net-
works in right Temporal lobe gliomas. CNS Neurosci Ther. 2021;27(3):363–71.

38. Garcia-Ramos C, Dabbs K, Lin JJ, Jones JE, Stafstrom CE, Hsu DA, Meyerand 
ME, Prabhakaran V, Hermann BP. Progressive dissociation of cortical and 
subcortical network development in children with new-onset juvenile myo-
clonic epilepsy. Epilepsia. 2018;59(11):2086–95.

39. Abazid M, Houmani N, Dorizzi B, Boudy J, Mariani J, Kinugawa K. Weighted 
brain network analysis on different stages of clinical cognitive decline. Bioeng 
(Basel) 2022;9(2).

40. Lei D, Li W, Tallman MJ, Patino LR, McNamara RK, Strawn JR, Klein CC, Nery 
FG, Fleck DE, Qin K, et al. Changes in the brain structural connectome after a 
prospective randomized clinical trial of lithium and quetiapine treatment in 
youth with bipolar disorder. Neuropsychopharmacology. 2021;46(7):1315–23.

41. Zhao X, Tian L, Yan J, Yue W, Yan H, Zhang D. Abnormal Rich-Club organiza-
tion associated with compromised cognitive function in patients with 
schizophrenia and their unaffected parents. Neurosci Bull. 2017;33(4):445–54.

42. Ma Z, Perez P, Ma Z, Liu Y, Hamilton C, Liang Z, Zhang N. Functional atlas of 
the awake rat brain: A neuroimaging study of rat brain specialization and 
integration. NeuroImage. 2018;170:95–112.



Page 12 of 12Li et al. BMC Geriatrics          (2025) 25:351 

43. Long Z, Chen D, Lei X. Enhanced rich club connectivity in mild or moderate 
depression after nonpharmacological treatment: A preliminary study. Brain 
Behav. 2023;13(10):e3198.

44. Markett S, Boeken OJ, Wudarczyk OA, Alzheimer’s Disease Neuroimaging 
I. Multimodal imaging investigation of structural rich club alterations in 
Alzheimer’s disease and mild cognitive impairment: amyloid deposition, 
structural atrophy, and functional activation differences. Eur J Neurosci. 
2024;60(3):4169–81.

45. Hua JPY, Cummings J, Roach BJ, Fryer SL, Loewy RL, Stuart BK, Ford JM, Vino-
gradov S, Mathalon DH. Rich-club connectivity and structural connectome 
organization in youth at clinical high-risk for psychosis and individuals with 
early illness schizophrenia. Schizophr Res. 2023;255:110–21.

46. Deng X, Liu L, Luo J, Liu L, Hui X, Feng H. Research on the mechanism 
of cognitive decline in patients with acoustic neuroma. Front Neurosci. 
2022;16:933825.

47. Yan T, Wang W, Yang L, Chen K, Chen R, Han Y. Rich club disturbances of 
the human connectome from subjective cognitive decline to Alzheimer’s 
disease. Theranostics. 2018;8(12):3237–55.

48. Yang Z, Telesford QK, Franco AR, Lim R, Gu S, Xu T, Ai L, Castellanos FX, Yan 
CG, Colcombe S, et al. Measurement reliability for individual differences in 
multilayer network dynamics: cautions and considerations. NeuroImage. 
2021;225:117489.

49. Cai L, Dong Q, Niu H. The development of functional network organization in 
early childhood and early adolescence: A resting-state fNIRS study. Dev Cogn 
Neurosci. 2018;30:223–35.

50. Betzel RF, Byrge L, Esfahlani FZ, Kennedy DP. Temporal fluctuations in 
the brain’s modular architecture during movie-watching. NeuroImage. 
2020;213:116687.

51. Miranda AM, Bravo FV, Chan RB, Sousa N, Di Paolo G, Oliveira TG. Differential 
lipid composition and regulation along the hippocampal longitudinal axis. 
Transl Psychiatry. 2019;9(1):144.

52. Huerta PT, Robbiati S, Huerta TS, Sabharwal A, Berlin RA, Frankfurt M, Volpe BT. 
Preclinical models of overwhelming sepsis implicate the neural system that 
encodes contextual fear memory. Mol Med. 2016;22:789–99.

53. Roberts G, Perry A, Lord A, Frankland A, Leung V, Holmes-Preston E, Levy F, 
Lenroot RK, Mitchell PB, Breakspear M. Structural dysconnectivity of key cog-
nitive and emotional hubs in young people at high genetic risk for bipolar 
disorder. Mol Psychiatry. 2018;23(2):413–21.

54. Kandilarova S, Stoyanov D, Kostianev S, Specht K. Altered resting state effec-
tive connectivity of anterior Insula in depression. Front Psychiatry. 2018;9:83.

55. Haucke M, Heinz A, Liu S, Heinzel S. The impact of COVID-19 lockdown on 
daily activities, cognitions, and stress in a lonely and distressed population: 
Temporal dynamic network analysis. J Med Internet Res. 2022;24(3):e32598.

56. Mannes ZL, Waxenberg LB, Cottler LB, Perlstein WM, Burrell LE 2nd, Ferguson 
EG, Edwards ME, Ennis N. Prevalence and correlates of psychological distress 
among retired elite athletes: A systematic review. Int Rev Sport Exerc Psychol. 
2019;12(1):265–94.

57. Yang HW, Bae JB, Oh DJ, Moon DG, Lim E, Shin J, Kim BJ, Lee DW, Kim JL, Jhoo 
JH, et al. Exploration of cognitive outcomes and risk factors for cognitive 
decline shared by couples. JAMA Netw Open. 2021;4(12):e2139765.

58. Chatters LM, Taylor RJ, Woodward AT, Nicklett EJ. Social support from church 
and family members and depressive symptoms among older African Ameri-
cans. Am J Geriatr Psychiatry. 2015;23(6):559–67.

59. Mitchell UA, Gutierrez-Kapheim M, Nguyen AW, Al-Amin N. Hopelessness 
among Middle-Aged and older Blacks: the negative impact of discrimina-
tion and protecting power of social and religious resources. Innov Aging. 
2020;4(5):igaa044.

60. Rancourt D, Barker DH, Jelalian E. Sex as a moderator of adolescents’ weight 
loss treatment outcomes. J Adolesc Health. 2018;62(5):591–7.

61. Liu G, Wang Y, Zheng W, Cheng H, Zhou R. P11 Loss-of-Function is associated 
with decreased cell proliferation and neurobehavioral disorders in mice. Int J 
Biol Sci. 2019;15(7):1383–95.

62. Canal-Rivero M, Montes-Garcia C, Garrido-Torres N, Moreno-Mellado A, 
Reguera-Pozuelo P, Ruiz-Veguilla M, Crespo-Facorro B. The impact of COVID-
19 pandemic on the psychological well-being among health care workers: 
A 6-month cohort longitudinal survey study. Rev Psiquiatr Salud Ment. 
2023;16:25–37.

63. Bae JB, Han JW, Kwak KP, Kim BJ, Kim SG, Kim JL, Kim TH, Ryu SH, Moon 
SW, Park JH, et al. Is dementia more fatal than previously estimated?? A 
Population-based prospective cohort study. Aging Dis. 2019;10(1):1–11.

64. Koirala N, Anwar AR, Ciolac D, Glaser M, Pintea B, Deuschl G, Muthuraman M, 
Groppa S. Alterations in white matter network and microstructural integrity 
differentiate Parkinson’s disease patients and healthy subjects. Front Aging 
Neurosci. 2019;11:191.

65. Shu N, Wang X, Bi Q, Zhao T, Han Y. Disrupted topologic efficiency of white 
matter structural connectome in individuals with subjective cognitive 
decline. Radiology. 2018;286(1):229–38.

66. Wang B, Zhan Q, Yan T, Imtiaz S, Xiang J, Niu Y, Liu M, Wang G, Cao R, Li D. 
Hemisphere and gender differences in the Rich-Club organization of struc-
tural networks. Cereb Cortex. 2019;29(11):4889–901.

67. Wang W, Liang W, Sun C, Liu S. Sex differences in depression: insights from 
multimodal Gray matter morphology and peripheral inflammatory factors. 
Int J Mol Sci 2024;25(24).

68. Huang GP, Mai LP, Zheng ZJ, Wang XP, He GD. Sex differences in the associa-
tion between the muscle quality index and the incidence of depression: A 
cross-sectional study. World J Psychiatry. 2024;14(9):1335–45.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	Long-term risk of late-life depression in widowed elderly: a five-year follow-up study
	Abstract
	Introduction
	Materials and methods
	Demographics
	Study methods
	MRI scanning
	Brain structural network construction
	Structural network properties
	Statistical analysis

	Results
	Demographic characteristics
	Differences in structural network properties
	Structural network properties and depression risk
	Changes in structural network properties and clinical characteristics
	Moderating effects of weekly exercise frequency and time spent with children

	Discussion
	References


